This article was downloaded by: [University of California, San Diego]

On: 15 August 2012, At: 23:30 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

Crystal Structure of a Chalcone Derivative

H. C. Devarajegowda a , M. A. Sridhar b , J. Shashidhara Prasad b , J. Indira c , B. Sooryanarayanarao b & Prakash P. Karat b

Version of record first published: 24 Sep 2006

To cite this article: H. C. Devarajegowda, M. A. Sridhar, J. Shashidhara Prasad, J. Indira, B. Sooryanarayanarao & Prakash P. Karat (2001): Crystal Structure of a Chalcone Derivative, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 369:1, 145-152

To link to this article: http://dx.doi.org/10.1080/10587250108030017

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

^a Department of Physics, Yuvaraja's College, University of Mysore, Mysore, 570 005, INDIA

^b Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570 006, INDIA

^c Department of Physics and Chemistry, Mangalore University, Mangalagangotri, Konaje, 574 199, INDIA

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Crystal Structure of a Chalcone Derivative

H.C. DEVARAJEGOWDA^a, M.A. SRIDHAR^{b*}, J. SHASHIDHARA PRASAD^b, J. INDIRA^c, B. SOORYANARAYANARAO^b and PRAKASH P. KARAT^b

^aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore 570 005, INDIA, ^bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, INDIA and ^cDepartment of Physics and Chemistry, Mangalore University, Mangalagangotri, Konaje-574 199, INDIA.

(Received January 17, 2001; In final form February 22, 2001)

The crystal and molecular structure of 1-(4-methoxyphenyl)-3-(phenyl)-2-propen-1-one derivative is determined by X-ray diffraction method. The compound, $C_{16}H_{14}O_2$, crystallises in the orthorhombic space group Pbca with a=10.921(2) Å, b=30.583(1) Å, c=7.535(3) Å, V=2516.7(9) Å³, Z=4, $D_{calc}=1.242$ Mg/m³, $\mu=0.327$ mm⁻¹, $F_{000}=504$, $\lambda(MoK\alpha)=0.71069$ Å and the structure was refined to R=0.044.

Keywords: Crystal growth; Chalcone; NLO; Structure analysis

INTRODUCTION

The most commonly used second-order non-linear optical (NLO) crystals in the bulk form tend to be inorganic crystals such as ADP, ADP-isomorphs, KDP, ADA, etc. and the corresponding deuterated versions, the ABO₃ type of ferroelectrics such as LiIO₃, LiNbO₃, KNbO₃, etc. and the borates such as β-BaB₂O₄, LiB₃O₅, etc. Although the III-V and II-VI compounds such as GaAs, InSb, GaP, etc. generally have large dielectric coefficients, there is no birefringence that can be used to compensate for material dispersion because their structures are cubic. Therefore, they cannot be phase-matched in the bulk and are useful only in waveguide forms. Organic crystals hold promise because of the large variety of

^{*} Corresponding author: E-mail: mas@uomphysics.net, Tel: +91-821-516133, Fax: +91-821-516133

such materials and the potentiality to synthesize molecules according to some design principles. As a result, there have been extensive efforts to develop such materials for applications in nonlinear optics[1,2]. The organic NLO material contains one or more delocalized bonds, typically a ring structure like benzene. When substituted with donor and acceptor at the para position, they show large induced dipole moment under the influence of electromagnetic fields. Organic NLO materials are inherently poor in mechanical hardness, have low melting point and poor chemical inertness. Among many organic compounds reported for their second harmonic generation, chalcone derivatives are important materials for their excellent blue light transmittance and good crystallizability[3].

EXPERIMENTAL

Synthesis

Substituted chalcone derivatives can be synthesized by Claisen-Schmidt condensation reaction method[4]. This is the reaction of substituted acetophenone with substituted benzaldehyde in the presence of aqueous alkali. The basic molecular structure of substituted chalcone is given below.

A chalcone derivative with X = H and $Y = OCH_3$ was synthesized by a solution of benzaldehyde (0.01 mol) and appropriate p-methoxyacetophenone (0.01 mol) in ethanol (20 ml) and treating with an aqueous solution of potassium hydroxide (10 ml, 5%). The mixture was stirred well and kept aside for 24 hours. The resulting solid mass was collected by filtration, dried and recrystallised three to four times from ethanol.

Solubility

The compound is sparingly soluble in ethanol, methanol and highly soluble in acetone, benzene, N,N-dimethylformamide, xylene and 1,4-dioxane. The solubility is calculated using the formula

Solubility (wt %) =
$$\frac{\text{wt(solute)}}{\text{wt(solute + solvent)}} \times 100$$

Analysis

The UV/visible spectra is shown in figure 1. It is transparent in the entire visible region of the spectra. The IR spectra of the sample confirms the existence of funcional groups in the material and is represented in figure 2. The sample is also found to be chemically stable and non-hygroscopic.

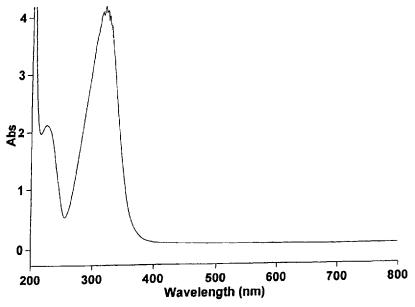


FIGURE 1 UV / Visible spectra

Crystal growth

The crystals were grown by slow evaporation technique[5]. Acetone and benzene were found to be the best solvents for the growth of crystals. A crystal of size $30 \times 29 \times 4 \text{ mm}^3$ was grown using benzene as solvent in 19 days. Another crystal of the same sample of size $35 \times 25 \times 4 \text{ mm}^3$ was obtained in 25 days using acetone as solvent and the same is shown in figure 3. Large parts of the crystals were found to be transparent.

Density measurement

The density was determined by flotation technique using small crystals of the sample. The measured density is 1.242(5) gm/cc.

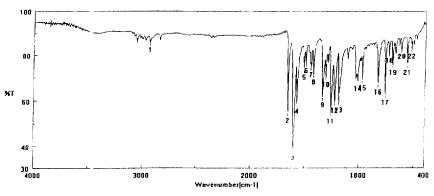


FIGURE 2 IR spectra

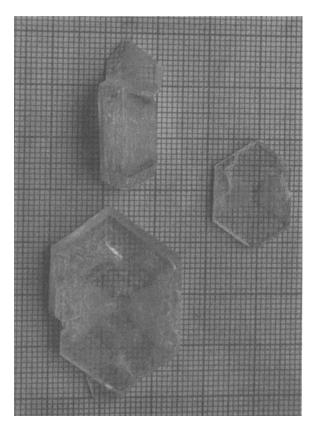


FIGURE 3 Crystal grown in acetone (See Color Plate II at the back of this issue)

TABLE I Atomic coordinates and equivalent thermal parameters of the non-hydrogen atoms

Atom	x	У	5	U_{eq}
O1	0.09952(17)	0.13031(5)	0.0996(2)	0.0720(6)
C10	0.0488(2)	0.26455(7)	0.1373(3)	0.0475(6)
O3	-0.07855(16)	0.32453(5)	0.1999(2)	0.0721(6)
C15	0.1590(2)	0.24800(7)	0.0744(3)	0.0524(6)
C9	0.0235(2)	0.31181(7)	0.1524(3)	0.0526(6)
C14	0.1806(2)	0.20354(7)	0.0596(3)	0.0532(6)
C13	0.0896(2)	0.17440(7)	0.1078(3)	0.0522(6)
C12	-0.0215(3)	0.19034(8)	0.1702(3)	0.0632(7)
CH	-0.0410(2)	0.23416(8)	0.1844(3)	0.0568(6)
C8	0.1183(2)	0.34386(7)	0.1060(3)	0.0558(6)
C4	0.1769(2)	0.41922(7)	0.0112(3)	0.0560(6)
C7	0.0936(2)	0.38485(8)	0.0687(3)	0.0601(7)
C3	0.1308(3)	0.45757(8)	-0.0615(3)	0.0711(8)
C16	0.2146(3)	0.11198(8)	0.0476(4)	0.0717(8)
C5	0.3043(3)	0.41465(8)	0.0194(3)	0.0639(7)
C6	0.3793(3)	0.44694(9)	-0.0471(4)	0.0800(8)
C2	0.2062(3)	0.48978(9)	-0.1260(4)	0.0830(10)
C1	0.3313(3)	0.48437(9)	-0.1192(4)	0.0834(9)

where $U_{\text{eq}} = 1/3\pi^2 \Sigma_i \Sigma_j a_i a_j \overline{a_i^* \cdot a_j^*}$

TABLE II Bond Lengths (Å)

Atoms	Length	Atoms	Length
O1-C13	1.354(3)	C12-C11	1.361(3)
O1-C16	1.430(3)	C8-C7	1.313(3)
C10-C15	1.389(3)	C4-C3	1.389(3)
C10-C11	1.397(3)	C4-C5	1.400(4)
C10-C9	1.476(3)	C4-C7	1.456(3)
O3-C9	1.234(3)	C3-C2	1.373(4)
C15-C14	1.385(3)	C5-C6	1.377(4)
C9-C8	1.468(3)	C6-C1	1.371(4)
C14-C13	1.384(3)	C2-C1	1.377(4)
C13-C12	1.389(3)		

NLO property

A preliminary study of second harmonic generation (SHG) measurement on powdered samples was undertaken[6]. The efficiency of the sample is less than that of urea.

Crystal structure analysis

A pale yellow rectangular crystal of dimension $0.2 \times 0.2 \times 0.3$ mm was selected for X-ray data collection. All measurements were made an a Rigaku AFC7S diffractometer with graphite monochromated (MoK α) radiation. The data were collected at a temperature of 293K using the ω -2 θ scan technique. Least squares refinement of 24 reflections in the range $28.84^{\circ} \le 20 \le 37.38^{\circ}$ yielded a primitive orthorhombic cell. The data were corrected for Lorentz and polarization effects. An empirical absorption correction [7] based on the azimuthal scans of three reflections was applied which resulted in the transmission factors ranging from 0.861 to 1.00. A total of 3644 intensities were collected in the 2θ range of $5 \le 2\theta$ $\leq 65^{\circ}$ of which 2881 were unique ($R_{\text{int}} = 0.0261$). The structure was solved by direct methods (SHELXS-97) [8] and the resulting fragment was expanded using difference Fourier maps. The function minimized throughout refinement was Σ $w(|F_{\alpha}| - |F_{\alpha}|)^2$ with $w=1/\sigma^2(F_{\alpha})$. Final refinement was carried out with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were placed at calculated positions and were not refined. The final cycle of full-matrix refinement [9] based on 3664 observed reflections ($I \ge 2\sigma(I)$) and 176 parameters converged to R = 0.0445 with goodness of fit = 1.086. The largest peak and deepest hole in the final difference map are 0.185 and -0.226 e.Å⁻³ respectively.

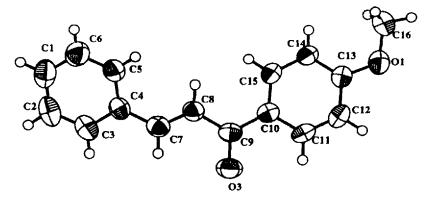


FIGURE 4 ORTEP of the molecule at 50% probability

Atoms	Angle	Atoms	Angle
C13-O1-C16	118.24(19)	C11-C12-C13	120.6(2)
C15-C10-C11	116.9(2)	C12-C11-C10	121.7(2)
C15-C10-C9	123.0(2)	C7-C8-C9	122.9(2)
C11-C10-C9	120.0(2)	C3-C4-C5	117.5(2)
C14-C15-C10	122.2(2)	C3-C4-C7	120.0(2)
O3-C9-C8	119.7(2)	C5-C4-C7	1224(2)
O3-C9-C10	120.0(2)	C8-C7-C4	128.7(2)
C8-C9-C10	120.2(2)	C2-C3-C4	121.9(3)
C13-C14-C15	119.3(2)	C6-C5-C4	120.2(3)
O1-C13-C14	124.9(2)	C1-C6-C5	121.0(3)
O1-C13-C12	115.8(2)	C3-C2-C1	119.7(3)
C14-C13-C12	119.3(2)	C6-C1-C2	119.6(3)

TABLE III Bond Angles (°)

Results and Discussion

The final positional coordinates of all the non-hydrogen atoms with equivalent isotropic thermal parameters are given in table I. The bond distances and bond angles for non-hydrogen atoms are given in tables II and III respectively. ORTEP [10] of the molecule at 50% probability is given in figure 4. Packing of the molecules along a axis is shown in figure 5. The weak non-linear optical property can be accounted in terms of crystal packing. The structure contains C-H...O hydrogen bonded dimers, which form a sheet parallel to a-axis[11].

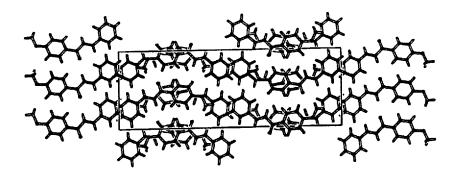


FIGURE 5 Packing of the molecules of down a axis

Acknowledgements

The authors would like to express their thanks to DST, Government of India for financial assistance under the project SP/I2/FOO/93.

References

- [1] D.C. Wash., Nonlinear Optical Properties of Organic and Polymeric materials, D. Williams (ed.), Am. Chem. Soc., (1983).
- [2] D.S. Chemla and J. Zyss., Non-linear Optical Properities of Organic Molecular Crystals. Vol. 1 and Vol. 2, Academic Press, London, (1987).
- [3] D. Fichou, T. Watanabe, T. Tanaka, S. Miyata, G. Goto and M. Nakayama., Japan J. Appl. Phys., 27 (1988) L429.
- [4] D.N., Dhar, The Chemistry of Chalcones and related compounds. JOHN WILEY and SONS, Newyork (1981).
- [5] J.C. Brice., Crystal Growth from Solution, North Holland Publishing Company. (1973).
- [6] S.K. Kurtz and T.T. Perry., Appl. Phys., 39, 3798, (1968).
- [7] A.C.T. North, D.C. Phillips and F. S. Mathews., Acta Cryst. A24, 351–359 (1968).
- [8] G.M. Sheldrick. SHELXS-97-Crystal Structure Solution Program. University of Göttingen. Germany (1997).
- [9] G.M. Sheldrick. SHELXS-97-Crystal Structure Refinement Program, University of Göttingen. Germany (1997).
- [10] L. Zsolnai., ZORTEP-Molecular Graphics Program. University of Heidelberg (1997).
- [11] R. Srinivasa Gopalan., Investigation of molecular crystals using experimental charge density. JNCASR, Bangalore, India (2000).